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Abstract. Quantum similarity is investigated for neutral atoms and singly charged ions by means of their
one-particle densities in both position and momentum spaces. As recently observed for neutral atoms,
the analysis involving singly charged ions in momentum space provides relevant information concerning
structure and periodicity properties. Momentum-space similarity is also revealed to be strongly related to
the kind of ionization process the system suffers, to the structural characteristics of the momentum density
as well as to the ionization potential.

PACS. 31.10.+z Theory of electronic structure, electronic transitions, and chemical binding – 31.15.-p
Calculations and mathematical techniques in atomic and molecular physics

1 Introduction

Quantum Similarity theory [1,2] was originally developed
in order to establish quantitative comparisons between
molecular systems by means of their fundamental struc-
tural magnitudes: electron density functions.

The quantification of similarity between two molecu-
lar structures, based on quantum chemistry and on the
comparison of their charge densities was firstly proposed
by Carbó et al. [1]. Afterwards, the same research group
studied the theoretical framework of quantum similarity.
Since then, the design of novel procedures, the implemen-
tation of new algorithms and measures as well as their
practical applications have also been extensively devel-
oped [3]. Simultaneously, other research groups adopted
quantum similarity, extending the implementation of the
theory to various fields and envisaging new applications,
giving rise to a great deal of relevant results [4,5]. Since
then, molecular similarity has been one of the cornerstones
of recent chemical research in molecules [6], complemen-
tary to important studies in which information entropies
are the main quantities in order to measure the distance
between two electron distributions or processes [7–10].

The generality of the method allows it to be used for
other quantum objects, such as nuclei or atoms. Never-
theless, very few Quantum Similarity Measures have been
employed for studying such systems, dealing only with the
position variable r [11–15]. The basic result concerning
atomic systems is that a nearest neighbour similarity is
retrieved, masking periodicity, then confirming the earlier
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work of Carbó et al. [11,12]. Nevertheless, introduction of
shape functions [13,14] and the information discrimina-
tions concept, with reference to the noble gas atom of the
previous row, were found to reveal some features concern-
ing periodicity and shell structure. Very recently, a novel
quantum similarity measure has been constructed based
on information theory, from which the role of relativistic
effects on the electron density is studied [15].

Momentum space concepts, where the momenta of
electrons are the basic variables when dealing with the
associated density of the system, are common in solid
state physics, being much less frequently found in chem-
istry. In fact, most of the work on quantum similarity has
been carried out in the usual position representation r,
where problems associated to bonding topology are rel-
evant. However, emphasizing the variation of the long-
range position-space electron density strongly requires the
use of the conjugate space variable, namely the momen-
tum p [16].

Both the one particle densities of an N -electron atomic
system in position and momentum spaces, ρ(r) and Π(p)
respectively, are defined in terms of the N -particle wave-
function Ψ and its 3N dimensional Fourier transform Ψ̃
as [17]

ρ(r) =
∫

|Ψ(r, r2, . . . , rN )|2dr2 . . . drN (1)

Π(p) =
∫

|Ψ̃(p,p2, . . . ,pN )|2dp2 . . . dpN , (2)

normalized to the number of electrons N . The reason for
the underlying interest in momentum space concepts to
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questions of chemical similarity is due to the aforemen-
tioned Fourier relation between the wavefunction in po-
sition and momentum spaces. The spherically averaged
momentum space density Π(p), compared to its posi-
tion counterpart ρ(r), tends to be large at high p val-
ues. These differences concerning the region from which
the corresponding densities are providing the most rel-
evant information can be clearly understood having in
mind the respective asymptotic behaviors, an exponen-
tially decreasing one for the position density [18] (condi-
tioned by the value of the atomic ionization potential I)
while the momentum density decreases as slowly as p−8

for large p [19]. It is worthy to mention that, due to the
Fourier transform which connects both conjugate spaces,
long-range asymptotic behavior in one space is closely re-
lated to short-range properties in the complementary one.

Concerning the momentum density Π(p), which plays
a relevant role in the description of many physical proper-
ties of atomic systems [20,21], it is also the essential quan-
tity on defining many different experimentally accessible
quantities, which are in fact the main sources of experi-
mental data on the momentum density. Such is the case
of the Compton profile J(q) [22] or the reciprocal form
factor B(r) [23], given respectively by

J(q) =
1
2

∫
p≥q

Π(p)
p

dp (3)

B(r) =
∫

Π(p)e−ip·rdp. (4)

Other structural characteristics of the spherically aver-
aged momentum density Π(p) have been also extensively
studied, mainly concerning monotonicity properties and
displayment of local extrema, for both neutral [24,25] and
singly ionized [26] systems. Some of those properties will
be also involved in the present work within the framework
of quantum similarity.

The Quantum Similarity Measure (QSM) between iso-
lated atoms is defined in a completely similar form as for
molecules or other quantum systems [12]:

MAB ≡
∫

ρA(r1)Ω(r1, r2)ρB(r1)dr1dr2 (5)

where ρA(r1) and ρB(r2) are the (spinless) electron den-
sity functions of both systems A and B, and Ω(r1, r2)
is a separation operator. The QSM is complementary to
other well-known distances, such as the (symmetrized)
Kullback-Leibler entropy [27,28], the Kolmogorov dis-
tance [29] or the Jensen-Shannon divergence [30,31].

Most often, Ω is chosen as the Dirac delta function
δ(r1 − r2) reducing equation (5) to an overlap type in-
tegral, and the other most oftenly used operator being
r−1
12 , transforming equation (5) in a Coulomb-type inte-

gral. One can generalize these computations by using other
positive powers rn

12 of the interdistance. Normalization is
taken by defining a Quantum Similarity Index (QSI)

QSI ≡ MAB√
MAAMBB

(6)

running between 0 and 1. Evaluation of a similarity in-
dex for atoms is straightforward using electron densities
of sufficient quality for the isolated atoms. In a completely
similar way one can compute similarity indices in momen-
tum space by using the corresponding momentum densi-
ties ΠA(p1) and ΠB(p2).

MAA (or MBB) is called quantum self-similarity or
quantum autosimilarity index (QAI) and is obtained, in-
dependently of the operator, when comparing a system
with itself. It is related with the electronic charge density
occupation in the space, that is, provides information on
the charge concentration of the considered quantum ob-
ject. When the selected operator is the overlap one, self-
similarities can be considered as the square of the norm
of the density function in the chosen metric. This is a
very important measure of localization, called also linear
entropy [32], in contrast with the (nonlinear) Shannon en-
tropy (both the linear and the Shannon entropies being
closely related to Renyi entropies Rq(ρ) of order 2 and
1, respectively, as MAA = e−R2 and Sρ = R1), or in other
contexts, informational energy and inverse participation
number [33].

In a recent work [34] in which, to the best of our knowl-
edge, QSI have been, for the first time, calculated and
analyzed for neutral atoms throughout the Periodic Ta-
ble in momentum space, it has been shown the relevant
role played by the linear momentum p as the basic vari-
able of the one-particle momentum density Π(p), in order
not only to quantify the degree of similarity between two
atomic systems but also to provide information on struc-
tural characteristics and shell-filling features. In the same
work it is also shown, as previously known, that QSI as-
sociated to the position-space density ρ(r) only provide
information on how close the atoms are located at the pe-
riodic table. In order to get additional knowledge on the
groups to which the systems belong, shell structure and
periodicity, it is necessary to take into account the mo-
mentum variable.

Here we investigate the unexplored momentum space
similarity for singly charge ions, firstly (Sect. 2) by show-
ing the very different behaviors of the QSI between two
ionized systems when dealing with the position or the mo-
mentum variable. Having in mind the importance of the
atomic ionization potential I when describing structural
characteristics (e.g. asymptotic behavior) of the density, a
study of the relationship among the Quantum Similarity
Index QSIp of two consecutive neutral systems (i.e. neu-
tral atoms differing by one electron), the Quantum Au-
tosimilarity Index QAIp and the ionization potential I is
carried out in Section 3, where again periodicity properties
are displayed due to the involvement of the momentum
variable. Other local properties of the momentum density
and its corresponding radial function (e.g. location of local
extrema) are also shown (Sect. 4) to be strongly related to
the values of the above quantities, specially when consid-
ering the process involved in the ionization of each neutral
atom to obtain their corresponding singly ionized systems,
namely cations and anions. The appropriate concluding
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remarks based on the aforementioned results are finally
given (Sect. 5).

2 Position and momentum space similarities
for ions

The main aim of this section is to analyze the Quantum
Similarity Index (QSI) of two singly-charged ions (cations
or anions) in both position and momentum spaces, by
considering the associated one-particle densities ρ(r) and
Π(p), respectively. It is known [34] that the QSI com-
ing from the position-space densities (QSIr) of two atoms
with nuclear charges Z1 and Z2 only provides informa-
tion on the difference |Z1 − Z2|, attaching the maximum
value 1 for identical systems (i.e. Z1 = Z2) and decreas-
ing monotonically when increasing such a difference or,
equivalently, when dealing with more distant systems in
the periodic table. That is, the quantity QSIr masks any
information concerning periodicity properties, groups to
which the systems belong and so on. However, the cor-
responding quantity QSIp involving momentum densities
take values according to shell-filling and the occupation
number of valence orbitals, displaying maxima when the
pair of considered atoms belong to the same group.

An identical analysis for singly charged ions is here also
carried out by computing the similarities QSIr and QSIp.
In doing so, the atomic wavefunctions of Koga et al. [35]
have been employed, for systems with a number of elec-
trons up to 54. Additional results will be also obtained for
neutral atoms up to Z = 103 by employing the wavefunc-
tions also given in the same reference.

These wavefunctions are analytically expressed as lin-
ear combinations in a Slater type basis, giving rise to a
variational approximation to the Hartree-Fock wavefunc-
tion for the experimental ground state of the considered
system. They are constrained by the electron-nuclear cusp
condition (of each orbital) as well as the long-range behav-
ior. The total energy provided by the variational approx-
imation is not more than a few microHartrees above the
numerical Hartree-Fock limit values.

Both similarities are represented, respectively, in Fig-
ures 1 and 2 for anions as functions of the nuclear charge
Z (similar results are also obtained for cations). It is im-
mediate to extract the same conclusions for singly charged
ions and neutral atoms, i.e. the necessity of dealing with
momentum densities in order to obtain information on
periodicity properties when comparing a pair of anions,
cations or neutral atoms.

This fact is also observed when comparing a couple of
systems with identical nuclear charge Z but differing on
the number of electrons, namely the pairs anion-neutral
(AN), neutral-cation (NC) and anion-cation (AC). Again
the study is performed in both conjugated spaces.

Concerning position space, all computed values of the
QSIr for the aforementioned pairs of atomic systems al-
most reach the maximum value 1. Such values are always
above from 0.99996, 0.99974 and 0.99960 for the pairs AN,
NC and AC, respectively. Then, it is shown that charge
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Fig. 1. Quantum similarity index QSIr(Z, Z′) of singly
charged anions (Z′ = 6, 14, 32, 50) in position space.
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Fig. 2. Quantum similarity index QSIp(Z, Z′) of singly
charged anions (Z′ = 6, 14, 32, 50) in momentum space.

densities do not essentially vary when adding or removing
an electron.

However, results are completely different in momen-
tum space. The ranges of values for QSIp are strongly
dependent on the orbital angular momentum l of the sub-
shells affected by the change on the number of electrons
(i.e. if the ionization process concerns ‘s’, ‘p’ and/or ‘d’
electrons). Such a dependence is clearly displayed in Ta-
ble 1, in which the aforementioned ranges of values of
QSIp are given for the three pairs (AN, NC, AC) with
identical nuclear charge Z (up to systems with 54 elec-
trons), attending to the quantum number l of the elec-
tronic subshells involved in the ionization process. There
are a few cases in which, apart from removing an electron,
an additional translation of another electron from an ‘s’
to a ‘d’ subshell also occurs (as denoted in the table).

It is worthy to mention that, when removing an
‘s’ electron in the process NC, there appear two
subranges (0.367–0.823 and 0.894–0.964) corresponding,
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Table 1. Ranges of the Quantum Similarity Index QSIp be-
tween neutral atoms (N), anions (A) and cations (C) and sub-
shells involved in the ionization processes.

Subshell AN NC AC
s 0.716–0.808 0.367–0.964 0.151–0.344
p 0.977–0.991 0.985–0.999 0.924–0.979
d 0.792–0.848 0.977–0.996

s(s → d) 0.339 0.487–0.488
s, d 0.591–0.660
p, d 0.886

respectively, to the cases where the ‘s’ subshell becomes
or not empty. The analysis of the data in the table al-
lows to say that higher effects on the momentum densities
(i.e. lower values of the associated QSIp) correspond to
ionization processes where ‘s’ electrons are involved and,
specially, when an ‘s’ subshell disappears.

Attending to the aforementioned results, in what fol-
lows we will only deal with the momentum density Π(p)
with the aim of describe structural characteristics and
physical properties of both neutral and ionized systems.

3 Ionization potential, similarity
and autosimilarity

The main physical property involved in describing pro-
cesses which give rise to an atomic system differing from
the starting one by one electron is the atomic ionization
potential I. In previous works [9,10] it has been shown
to be correlated to different information measures. Such a
correlation is also confirmed in this section, where we will
deal with neutral atoms of nuclear charge in the range
Z = 1–103, with the aim of study the correlation between
the atomic ionization potential I(Z), the Quantum Simi-
larity Index QSIp(Z−1, Z) of two consecutive atoms, and
the Quantum Autosimilarity Index QAIp(Z), defined as
the Quantum Similarity Measure QSM of the two identi-
cal densities Π(p), or equivalently

QAIp(Z) =
∫

Π2(p)dp,

which provides information on the momentum concentra-
tion of the considered quantum object, being a well-known
measure of localization.

Firstly, a comparison of the quantities QSIp(Z − 1, Z)
and I(Z) is carried out in Figure 3 for the whole range Z =
1–103. It is observed the similar structure of both curves
concerning main local extrema, showing a correlation be-
tween both quantities which is not displayed when drawing
the corresponding consecutive position index. In fact, sys-
tems displaying common main maxima for both functions
posses a completely filled ‘s’, ‘p’ and ‘f ’ valence subshell
(Z = 2, 4, 10, 12, 18, 36, 54, 70, 86, 102), while minima are
associated to systems with an isolated electron at an ‘s’
or ‘p’ subshell (Z = 3, 5, 11, 13, 19, 31, 37, 47, 55, 78, 87).
There are only two exceptions (Z = 59, 77) involved in
the anomalous shell-filling.
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Fig. 3. Quantum similarity index QSIp(Z − 1, Z) of consecu-
tive neutral atoms in momentum space and atomic ionization
potential.
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Fig. 4. Quantum autosimilarity index QAIp(Z) of neutral
atoms in momentum space.

Concerning QAIp(Z), such a quantity is shown for neu-
tral atoms as a function of the nuclear charge Z = 1–103
in Figure 4. Again, periodicity patterns are displayed at-
tending to the different monotonically decreasing curves
associated to the different groups of the periodic table.

4 Local characteristics of the radial
momentum density

Another relevant density function in momentum space is
the so-called radial momentum density P (p), defined as

P (p) ≡ 4πp2Π(p)

and which quantifies the probability of finding an electron
with a given linear momentum. Such a function displays,
for both neutral and ionized systems, a number of local
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Fig. 5. Radial momentum densities P (p) of Li, Li+ and Li−

(nuclear charge Z = 3).

extrema associated to the structure of the momentum den-
sity Π(p). Nevertheless, it is observed that the most rele-
vant maximum (corresponding to the absolute maximum
of the density) is always the first one. The process of ion-
ization (both by adding or removing electrons) produces
a translation of the local extrema and, in particular, of
the most relevant one. It is also observed a monotonic be-
havior of the location of extrema when moving across a
group or a period, independently of dealing with anions,
cations or neutral atoms. In this sense, it is worthy to
mention that, when increasing the nuclear charge across
a group, both the distance to the origin and the height
of the main maximum decrease. An opposite behavior is
displayed when moving across a period in what location
of the maximum concerns.

As mentioned above, the process of ionization (in
which we deal with a pair of systems with identical nu-
clear charge) translates the main maximum of P (p). This
is clearly observed in Figure 5, where the radial momen-
tum densities P (p) of all the neutral atom (Lithium) and
its singly charged ions (Li+ and Li−), with nuclear charge
Z = 3 are drawn, showing the aforementioned changes on
the structure of P (p). In order to quantify the magnitude
of such a translation when comparing two systems, let us
consider the ratio p′/p between the locations of the abso-
lute maxima associated to the systems with a higher and
a lower number of electrons, p′ and p respectively. It is
always observed that p′ < p and, consequently, that ratio
runs between 0 and 1.

This measure of the structural alteration of the den-
sity should be expected to be related to other quantities,
studied in the previous sections, and which appeared to
be strongly related to the ionization process.

This is the purpose of Figure 6, where the similarity
QSIp for all neutral and ionized systems considered in
the present work (AN, NC, AC) is drawn as a function
of the ratio p′/p. In the figure appear clearly distinguish-
able five regions, each corresponding to different ionization
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Fig. 6. Quantum similarity index QSIp among neutral atoms
and singly charged ions and ratio p′/p of local maxima of radial
momentum densities.

processes, as described below:

(I) An anion with an ‘s’ subshell completely filled is
compared to the system (neutral atom or cation)
with the same subshell absolutely empty. Here the
range for p′/p is 0.081–0.120.

(II) Corresponds to the process in which a neutral atom
loses an ‘s’ subshell. The ratio p′/p belongs to the
interval 0.165–0.233.

(III) This region is associated to the comparison between
an anion and the associated cation which differ in an
‘s’ and a ‘d’ electron, being the ratio p′/p within the
values 0.364–0.410.

(IV) When a neutral atom gains an ‘s’ or a ‘d’ electron,
the limit values for p′/p are 0.483–0.571.

(V) Resting comparisons (i.e. those only involving ‘p’ or
‘d’ electrons, as well as those where a filled ‘s’ sub-
shell only loses one electron) always provide values
of p′/p above from 0.617.

Consequently, it is clearly evident the correlation between
the similarity QSIp and the structural variation p′/p, sub-
ject to the ionization process connecting both compared
systems.

Following a similar reasoning, it appears interesting to
study the value of the ionization potential I (the main
physical property on describing ionization processes) in
terms of the above employed ratio p′/p. This comparison
is given in Figure 7 for the process on going from a neutral
atom to the corresponding singly charged cation, where
again three different regions are distinguished associated
to different ranges of p′/p. A similar interpretation to the
one given above can be given again:

(I) Region around p′/p = 0.2 corresponds to processes
in which an ‘s’ subshell becomes completely empty.

(II) Points appearing close to p′/p = 0.8 are associated
to processes in which a completely filled ‘s’ subshell
loses only one electron or those in which a ‘d’ subshell
becomes completely empty.
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Fig. 7. Atomic ionization potential I(Z) and ratio p′/p of local
maxima of radial momentum densities for pairs neutral-cation.

(III) Removing ‘p’ electrons (as well as the exceptional
case Z = 46, the only one in which a completely
filled ‘d’ subshell loses one electron) provided the
cloud of values of p′/p around 0.9.

5 Concluding remarks

The comparison of ionized and/or neutral atomic systems
by means of Quantum Similarity Indices provides relevant
information on periodicity properties and shell structure
when dealing with one-particle densities in momentum
space. However, the corresponding values in position space
are only concerned by their closeness at the periodic table.

Such an index in momentum space, as well as the
quantum autosimilarity index, are strongly conditioned
by structural (e.g. location of local extrema of the den-
sities) and experimentally accessible (e.g. ionization po-
tential) quantities. Additionally, other characteristics (e.g.
quantum numbers) of the electrons involved in the ioniza-
tion processes essentially determine the range of values to
which the associated quantum similarity index belongs.
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